Lecture 2

1. Appendix

1) Proof of Ascoli-Arzela Lemma

Step 1. Construction of the desired subsequence.

Take the whole rational numbers $\{r_i\}$ in [a, b]. Since $\{f(r_1)\}$ is bounded in \mathbb{R}^n , there exists a convergent subsequence $\{f_{1k}(r_1)\}$ $(k \in \mathbb{N}^+)$ by Bolzano-Weierstrass Theorem, i.e. $\{f_{1k}(t)\}$ converges at $t = r_1$. For $\{f_{1k}(r_2)\}$, which is still bounded in \mathbb{R}^n , there exists a convergent subsequence $\{f_{2k}(r_2)\} \subset \{f_{1k}(r_2)\}$ by the same reason. $\{f_{2k}(t)\}$ converges at $t = r_1, r_2$. After similar n steps, we can find following countable subsequences:

where $\{f_{nk}(t)\}$ converges at $t = r_1, r_2, \dots, r_n$.

Taking the diagonal sequence $g_n(t) = f_{nn}(t)$ $(n \in N^+)$, this sequence converges at any $\{r_i\}$ by the construction because $\{g_n(r_i)\}_{n\geq i} = \{f_{nn}(r_i)\}_{n\geq i}$ is a subsequence of $\{f_{in}(r_i)\}_{n\geq i}$ which converges.

Step 2. It remains to show that $g_n(t)$ is uniformly convergent on [a, b], i.e. $\forall \varepsilon > 0$, there exists $N \ge 1$ s.t. $n, m \ge N \implies ||g_n(t) - g_m(t)|| < \varepsilon$.

Since $g_n(t)$ converges on $\{r_i\}$, we have that for $\forall \varepsilon > 0$ and any $r_i \in [a, b]$, there exists $N(r_i)$ s.t. $n, m > N(r_i) \implies ||g_n(r_i) - g_m(r_i)|| < \frac{\varepsilon}{3}$.

By equicontinuity, and for the above given $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ s.t. for any $t_1, t_2 \in [a,b], |t_1 - t_2| < \delta(\varepsilon) \implies ||g_n(t_1) - g_n(t_2)|| < \frac{\varepsilon}{3}$ for all $n \in N^+$. Taking $O(r_i, \delta(\varepsilon))$, then $\bigcup_{i=1}^{\infty} O(r_i, \delta(\varepsilon)) \supseteq [a, b]$. There exists a finite numbers

of
$$O(r_i, \delta(\varepsilon))$$
 $(i = 1, ..., p)$ s.t. $\bigcup_{i=1}^p O(r_i, \delta(\varepsilon)) \supseteq [a, b]$

Let $N = \max\{N(r_1), N(r_2), \dots, N(r_p)\}$. Once $n, m \ge N$ and $t \in [a, b]$, there

exists one $O(r_{i_0}, \delta(\varepsilon)), 1 \le i_0 \le p$ s.t. $t \in O(r_{i_0}, \delta(\varepsilon))$. Then

$$\|g_{n}(t) - g_{m}(t)\| \leq \|g_{n}(t) - g_{n}(r_{i_{0}})\| + \|g_{n}(r_{i_{0}}) - g_{m}(r_{i_{0}})\| + \|g_{m}(r_{i_{0}}) - g_{m}(t)\|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This completes the proof. \Box

2) Proof of Peano Theorem by a Traditional Way

Construction for $t \in I_+$ only (the construction for $t \in I_-$ is similar).

Step 1. Construction:

For each $m \ge 1$, we subdivide I_+ with $I_+ = \bigcup_{k=1}^m [t_{k-1}^{(m)}, t_k^{(m)}]$, where $t_k^{(m)} = t_0 + \frac{hk}{m}$

for k = 1, 2, ..., m. We define $x_m(t)$ step by step on each subinterval $[t_{k-1}^{(m)}, t_k^{(m)}]$:

$$\begin{aligned} x_m(t) &= x_0 + f(t_0, x_0)(t - t_0) & \text{for } t \in [t_0^{(m)}, t_1^{(m)}], \text{ where } t_0^{(m)} = t_0, \\ & \Rightarrow x_m(t_1^{(m)}) = x_0 + f(t_0, x_0)(t_1^{(m)} - t_0); \\ x_m(t) &= x_m(t_1^{(m)}) + f(t_1^{(m)}, x_m(t_1^{(m)}))(t - t_1^{(m)}) & \text{for } t \in [t_1^{(m)}, t_2^{(m)}], \\ & \Rightarrow x_m(t_2^{(m)}) &= x_m(t_1^{(m)}) + f(t_1^{(m)}, x_m(t_1^{(m)}))(t_2^{(m)} - t_1^{(m)}); \end{aligned}$$

By induction, if we have constructed $x_m(t) = x_m(t_{k-1}^{(m)}) + f(t_{k-1}^{(m)}, x_m(t_{k-1}^{(m)}))(t - t_{k-1}^{(m)})$ for $t \in [t_{k-1}^{(m)}, t_k^{(m)}]$, so we have $x_m(t_k^{(m)}) = x_m(t_{k-1}^{(m)}) + f(t_{k-1}^{(m)}, x_m(t_{k-1}^{(m)}))(t_k^{(m)} - t_{k-1}^{(m)})$. Then, we define

$$x_m(t) = x_m(t_k^{(m)}) + f(t_k^{(m)}, x_m(t_k^{(m)}))(t - t_k^{(m)}) \text{ for } t \in [t_k^{(m)}, t_{k+1}^{(m)}].$$

So we have defined $x_m(t)$ on all $t \in I_+$, which is called the Euler polygons.

Step 2. $\{x_m(t)\}$ is well defined on I_+ :

Since

$$\begin{split} \|x_{m}(t) - x_{0}\| &\leq \|x_{m}(t) - x_{m}(t_{k}^{(m)})\| + \|x_{m}(t_{k}^{(m)}) - x_{m}(t_{k-1}^{(m)})\| + \dots + \|x_{m}(t_{1}^{(m)}) - x_{0}\| \\ &= \|f(t_{k}^{(m)}, x_{m}(t_{k}^{(m)}))(t - t_{k}^{(m)})\| + \|f(t_{k-1}^{(m)}, x_{m}(t_{k-1}^{(m)}))(t_{k-1}^{(m)} - t_{k}^{(m)})\| \\ &+ \dots + \|f(t_{0}, x_{0})(t_{1}^{(m)} - t_{0})\| \\ &\leq M(t - t_{k}^{(m)}) + M(t_{k-1}^{(m)} - t_{k}^{(m)}) + \dots + M(t_{1}^{(m)} - t_{0}) \\ &= M(t - t_{0}) \leq Mh \leq b, \ t_{0} \leq t \leq t_{k+1}^{(m)}. \end{split}$$

So that $(t, x_m(t)) \in Q$ for $t_0 \le t \le t_{k+1}^{(m)} \implies \{x_m(t)\}$ is well defined on I_+ .

Step 3. Since $x_m(t)$ is continuous at $t_k^{(m)}$, and $x_m(t)$ has a derivative $f(t_k^{(m)}, x_m(t_k^{(m)}))$ on $[t_k^{(m)}, t_{k+1}^{(m)}]$, then,

$$x_m(t) = x_0 + \int_{t_0}^t f^{(m)}(s) ds$$
 for $t_0 \le t \le t_{k+1}^{(m)}$,

where $f^{(m)}(t) := f(t_j^{(m)}, x_m(t_j^{(m)}))$ for $t \in [t_j^{(m)}, t_{j+1}^{(m)}]$ (piecewise function).

Step 4. Show that $\{x_m(t)\}\$ is equicontinuous and uniformly bounded.

For
$$t', t \in I_+$$
,
 $||x_m(t) - x_m(t')|| = ||\int_t^{t'} f^{(m)}(s) ds|| \le M |t - t'|, \forall m \ge 1$

and

$$||x_m(t)|| \le ||x_m(t_0)|| + ||x_m(t) - x_m(t_0)|| \le ||x_m(t_0)|| + Mh,$$

hence, $\{x_m(t)\}\$ is equicontinuous and uniformly bounded.

Step 5. Applying Ascoli–Arzela lemma, we have $x_{m_j}(t) \xrightarrow{E} x(t)$ on I_+ , where $\{x_{m_j}(t)\} \subseteq \{x_m(t)\}$. We claim that x(t) is the desired solution of (E) if $f^{(m_j)}(t) \xrightarrow{E} f(t, x(t))$ on I_+ .

Step 6. Show that $f^{(m_j)}(t) \xrightarrow{E} f(t, x(t))$ on I_+ :

For simple notation, we suppose that $x_m(t) \xrightarrow{E} x(t)$ on I_+ . Then, for the given $\varepsilon > 0$, since $f \in C(Q)$ and Q is compact, $\exists \delta > 0$ such that

$$\|f(t, x) - f(t', x')\| < \varepsilon$$

whenever $||(t-t', x-x')^T|| < \delta$, (uniformly continuous).

Now choose *m* so large such that $\frac{h}{m} < \frac{\delta}{3}$, $\frac{Mh}{m} < \frac{\delta}{3}$ and $||x_m(t) - x(t)|| < \frac{\delta}{3}$ whenever $t \in I_+$. For $t \in I_+$, $t \in [t_k^{(m)}, t_{k+1}^{(m)}]$ for some *k*, we have

$$\begin{split} \| (t_k^{(m)} - t, x_m(t_k^{(m)}) - x(t))^T \| &\leq |t_k^{(m)} - t| + \| x_m(t_k^{(m)}) - x(t)) \| \\ &\leq |t_k^{(m)} - t| + \| x_m(t_k^{(m)}) - x_m(t)\| + \| x_m(t) - x(t)\| \\ &\leq \frac{h}{m} + \frac{Mh}{m} + \frac{\delta}{3} \leq \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} = \delta , \end{split}$$

and hence

$$||f^{(m)}(t) - f(t, x(t))|| = ||f^{(m)}(t_k^{(m)}, x_m(t_k^{(m)})) - f(t, x(t))|| < \varepsilon.$$